Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Smart Cities ; 6(2):987, 2023.
Article in English | ProQuest Central | ID: covidwho-2305662

ABSTRACT

The COVID-19 pandemic has caused significant changes in many aspects of daily life, including learning, working, and communicating. As countries aim to recover their economies, there is an increasing need for smart city solutions, such as crowd monitoring systems, to ensure public safety both during and after the pandemic. This paper presents the design and implementation of a real-time crowd monitoring system using existing public Wi-Fi infrastructure. The proposed system employs a three-tiered architecture, including the sensing domain for data acquisition, the communication domain for data transfer, and the computing domain for data processing, visualization, and analysis. Wi-Fi access points were used as sensors that continuously monitored the crowd and uploaded data to the server. To protect the privacy of the data, encryption algorithms were employed during data transmission. The system was implemented in the Sri Chiang Mai Smart City, where nine Wi-Fi access points were installed in nine different locations along the Mekong River. The system provides real-time crowd density visualizations. Historical data were also collected for the analysis and understanding of urban behaviors. A quantitative evaluation was not feasible due to the uncontrolled environment in public open spaces, but the system was visually evaluated in real-world conditions to assess crowd density, rather than represent the entire population. Overall, the study demonstrates the potential of leveraging existing public Wi-Fi infrastructure for crowd monitoring in uncontrolled, real-world environments. The monitoring system is readily accessible and does not require additional hardware investment or maintenance. The collected dataset is also available for download. In addition to COVID-19 pandemic management, this technology can also assist government policymakers in optimizing the use of public space and urban planning. Real-time crowd density data provided by the system can assist route planners or recommend points of interest, while information on the popularity of tourist destinations enables targeted marketing.

2.
Sustainability ; 15(8):6814, 2023.
Article in English | ProQuest Central | ID: covidwho-2297671

ABSTRACT

Human activities have been limited by coronavirus disease 2019 (COVID-19), and the normal conditions of our lifestyles have changed, particularly in terms of electricity usage. The aim of this study was to investigate the impact of COVID-19 on the power sector in the Lao PDR in 2020, as well as the challenge of using solar energy to supply power to the network using an optimal approach. The returns on investment of network extension and the purchase of solar energy were also evaluated. Furthermore, load conditions caused by the country's lockdown policy were analyzed. We analyzed the optimal sizing and location of solar energy using a particle swarm optimization method based on the main objective functions, with the system's power loss decreasing and its reliability improved. The results demonstrated that the suddenly reduced load from industry and commercial business did not have a large impact on its operations;however, revenue was reduced. The optimal method for connecting solar energy to a network can reduce power loss and improve system reliability. In addition, we discovered that the location and capacity of solar generation can reduce the investment costs of extensions for new lines, with the surplus power being exported.

SELECTION OF CITATIONS
SEARCH DETAIL